

All that is required now is to arrange to repeat the

two‑instruction sequence the requisite number of times, For

7 6 5 4 3 2 1 0
CF
simplicity, let us do this using the most elementary looping

instruction, LOOP. We must place the number of times the

loop is to be executed in the register Cx, then at the end of the

loop issue the LOOP instruction which will decrement cx by 1

and loop back to the starting point (which we must label some​

SHR

how‑we will return to this point and describe how it is done) '

as long as ex is non‑zero. That is, it will loop the number of

times specified by the integer in cx,

7 6 5 4 3 2 1 0
G

To assemble this subroutine using an assembler like

MASM@ or TASM@, we would prepare a text file of the form:

POP BX
; get n

PO P CX
; get # of iterations

XOR DX, DX
; set n' = 0

HERE:
; beginning of loop

SHR BX, 1
; send O'th bit of n to CF

RCL

and shift right 1 place

RCL DX, 1

shift n' left and

move
C17 into Oth bit of n'

Different Forths will require minor differences in how we

LOOP HERE

Cx=cX‑1,
loop if CX > 0.

proceed. Several commercial Forths cache the top of the data

PUSH DX

leave
result on stack

stack in the register BX, thereby eliminating some pushes and

pops. The public‑domain F‑PC, on the other hand, leaves BX
(however, as we shall see below, there will need to be some

free. Since we are illustrating with F‑PC, our first job will be to
necessary boilerplate lines that conform to the particular

obtain the argument n; we therefore BX it from the stack to BX:
assembler's conventions, as well as respecting the calling con​

ventions of the high‑level language we are going to use the

POP BX
subroutine with).

To test the assembly language program with F‑PC's intrin​

Next let us assign the (unused) DX register to the
sic assembler, we modify it slightly (to conform to the latter's

bit‑reversed answer; we initialize DX to 0 quickly using bit‑
notational conventions), obtaining [Listing Three].

wise exclusive‑or [81

An assembler written in Forth is simple because the mne​

monics are actually IMMEDIATE words that execute during

XOR DX, DX
assembly, placing the appropriate operation codes in the pa​

rameter field of the word being defined. In the F‑PC assem‑ 1

Now we shift BX one place to the right using SHR; the
bler, the LOOP mnemonics (LOOP, LOOPZ, LOOPNz, etc.) ex​

rightmost bit, as the Figure suggests, moves from the register
pect a number on the stack, which is actually the address

to the Carry Flag. Then we RCL the DX register one place to
they loop back to (or not, depending whether an appropriate

the left; the bit formerly in the Carry Flag becomes the right‑
condition is satisfied). This can be supplied by an explicit

most bit Of DX. The left‑most bit (if any) of DX ends up in the
label or, as in the above example, we may simply say HERE,

CF. But that does not matter, because it will be replaced by
which places on the stack the address of the next piece of

the right‑most bit of Bx when the sequence is repeated. So
code to be assembled; this is the very point we want to loop

the machine‑language program (with comments) looks like
back to, hence LOOP enters the Intel opcode for LOOP, together 1

[Listing Two].
with that address.

We now enter the subroutine from

8, The instruction MOV DX, # 0 would also work, but requires one byte

the keyboard and test the result.

more storage.

Listing Three

CODE STIB <er> ok

POP BX <er> ok

CODE
STIB
reverse bit‑order
POB CX <er> POB <‑WHAT?

POP BX

get n

POP CX

get # of iterations

XOR DX, DX
\
set n' = 0
Oops! A typo, do it again. just in case,

HERE
\ beginning of loop
FORGET from STIB on:

SHR BX, # 1
send O'th bit of n to CF

and shift right 1 place
FORGET STIB <‑WHAT?

RCL DX, # 1
shift n' left and

move CF into O'th bit of n'
CODE STIB <er> ok

LOOP
Cx=cX‑1, loop if CX > 0.
POP BX <er> ok

PUSH DX
leave result on stack
POP CX <er> ok

NEXT

END‑CODE
terminate definition
XOR DX, DX <er> ok

HERE <er> ok

Forth Dimensions XX11,2

7

SHR BX, # 1 <cr> ok
9 the comments would have to be preceded with a semico​

RCL DX, # 1 <cr> ok

lon ; rather than Forth's traditional backslash \;

LOOP <or> ok
0 the word HERE must be converted to a loop label;

PUSH DX <cr> ok
0 a standard header must be added, and the definition

NEXT <or> ok

termination also changes.

END‑CODE <cr> ok

[See Listing Four.]

This all looks like it entered correctly‑at least the assem​

bler did not burp. The proof of the pudding, however, is in
Case conversion

the eating:

Many languages contain a library function for converting

4 7 STIB
<or> 14 ok
a string to all upper‑case letters or all lower‑case ones, leav​

4 14 STIB
<or> 7 ok
ing digits and punctuation alone. The new Forth ANS stan​

dard [9] happens not to require such a routine, although most

Eureka! No warts this time.
Forths contain a word analogous to UCASE as part of the corn​

If an assembly language version of STIB were needed for
9.
A copy of the final draft of the ANS Forth Standard document, X3114

linking with a BASIC or C program, some minor modifica‑

dpANS‑6 can be downloaded in several different machine‑readable

tions would be necessary:

formats, including F‑PC hypertext, Microsoft Word , or HTML, from the

Web site www.taygeta.com.

Listing Four

Code segment word public 'CODE'
define the code segment

assume cs: Code

public STIB
allow any routine to call it

STIB proc near
reverse bit‑order

POP BX
get n

POP CX
; get # of iterations

XOR DX, DX ; zero n'

HERE: ; label beginning of loop

SHR BX, 1 ; 01th bit ‑> CF, shift right

RCL DX, I ; n' : shift left, CF ‑> 0 1 th bit

LOOP HERE

CX=CX‑l, loop if CX > 0.

PUSH DX

leave result on stack

RET

return from function call

STIB
endp

terminate definition

Code
ends

end

Listing Five

Icase?
char ‑‑ flag) \ true if lower case

DUP (CHAR] a <
char fl)
\ true if char < "all

SWAP [CHAR] z >
fl f2)
\ true if char > "z"

OR
not[flag]
combine flags

NOT

logical not

UCASE
beg len)

0 DO

work from left
to right thru string

DUP C@
(‑‑ adr char)
\ get character

DUP lcase?

adr char flag)

32 AND

adr char 32 if lcase 1 0 else)

subtract 32 from lcase letters only

OVER C!

replace modified character

1+
LOOP

increment address by 1 and loop

DROP ;
\
clean up stack

Listing Six

lcase?
(char
‑‑
flag)

DUP
[CHAR]
a
<
char flagl)

SWAP
[CHAR]
z
>
flagl flag2)

OR

not[flag]

NOT

flag)

8

Forth Dimensions XXI,1,2

piling mechanism.

ing. The actual switch from lower to upper case is accomplished

The first step is to choose our approach. In Microsoft Quick
by subtracting 32d from the ASCII character code of the letter,

Basic@ (QB), a string of N characters is stored in a contiguous
since the upper‑case letters have codes 32d smaller than their

sequence of N bytes of memory in the default data segment.
corresponding lower‑case values. It is worth noting that in the

It is referenced by a 4‑byte string descriptor, with the first
words icase? and UCASE the programming style computes

two bytes containing the length as a signed 16‑bit integer,
the result rather than deciding it [11]. That is, while it is not

and the second two bytes the offset of the beginning of the
always practical to avoid decisions [12], good style eschews

string in the data segment. That is, Quick Basic strings can be
branches wherever possible.

up to 32 Kb long. Microsoft C stores strings in contiguous

We test the Forth version using non‑Standard but com​

segments of N+1 bytes with theN+lst byte containing 0 (stan‑
mon words $11 (save a string from the keyboard to temporary

dard terminator), strings being referenced by the address of
storage) and $. (print a counted string at address adr to the

their first byte.

screen) [13]:

Forth, by contrast, usually deals in counted strings up to

$" this + is A % Icase STringl' COUNT UCASE

256 bytes long, whose count is contained in the first byte. These

'PAD $. THIS + IS A % LCASE STRING ok

differences between languages present a minor problem in

designing subroutines that manipulate strings, since they will

The assembly language version is easy to construct. Begin

not work the same in Forth as in QB or C. The easiest method
with Icase? [Listing Six] and recode directly in assembly lan​

is to write the code in two pieces: a language‑specific header
guage [141 [see Listing Seven].

and a universal body. We illustrate with headers for Forth, Quick

Test it. (Note: "true"‑all bits set to 1‑ is assumed to be ‑1 in

Basic and C string‑Storage conventions.
this example, an illustration of "environmental dependency,"

What of the body code? If we write it first in high‑level
i.e., code that assumes two's‑complement integer arithmetic.)

Forth the design becomes clear [101 [see Listing Five]. That is,

CHAR A DUP
lcase? 65 0 ok

we step through the string a byte at a time from beginning to

CHAR a DUP
lcase? 97 ‑1 ok

end, testing whether the character is a lower‑case letter or

CHAR z DUP . lcase? . 122 ‑1 ok

"other." If lower case, change to upper case; otherwise do noth‑

CHAR & DUP . lcase? . 38 0 ok

10. The ANS Forth word WITHIN could have been used for this test, as in

working with ASCII codes, i.e., integers in the range 0‑255, we can save

lcase?
char ‑‑‑ flag=true if char is lower case)

register space by using eight‑bit operations rather than 16‑ or 32‑bit

[CHAR] a
[CHAR) z 1+ WITHIN ;

ones. (Of course, when PusHing or Popping to/from the data stack, the

operations appropriate to the cell size of the stack must be used.)

(The extra 1+ is required because ANS Forth defines WITHIN 50 that it
15. An alternate assembly definition of icase? employing jurrips is

returns TRUE if the limits satisfy n, s char < n2.) However, this would
CODE lcase?
char ‑‑ f)

not illustrate directly how to turn primitive Forth operations into CODE.
POP
BX
char ‑> BL

XOR
AX, AX
AX = false

11,

Note that, in this example, the use of a branching construct (IF

CMP
BL, # 97
< a ?

ELSE ... ENDIF) eliminates the need to store a byte if the character were

upper case or a non‑letter. That is, we could say
JL
DONE

e
IF 32 ‑
SWAP C ! ELSE
DROP ENDIF
CMP BL, # 122
\ > Z ?

JG
DONE

Howev1ecr,atsests reveal that most text input is predominantly lower case;

NOT AX
AX = true

hence, the time consumed in the branch dominates the unnecessary
DONE:

store operations.

PUSH
AX
flag ‑> TOS

12.

J.V, Noble, Computers in Physics, Jul/Aug 1991, p. 386.

NEXT

END‑CODE

13.

If your Forth lacks $'I and $. here are their definitions:
whereas we used no jumps to perform the tests in the previous version.

: $.,
(CHAR1 " WORD
PAD OVER C@ 1+ CMOVE PAD ;
The jumpless version assembles to 18 bytes, whereas the one with

Read text up to a terminating " then move it to PAD

i

jumps requires 18. That is, although the version with jump instructions i

\(temp storage); leave the string's new address.
looks much shorter than the branchless version, it is actually nearly the ~

same length. And eliminating jumps can reduce the likelihood of

$.
adr‑)
COUNT TYPE
having to dump the pipeline.

14. Several things to keep in mind about the translation: since we are

listing Seven

CODE Icase?

char ‑‑ flag)

POP BX

char ‑> BL

MOV AX, BX

copy to AL

SUB AL, # 96

AL = char ‑ 96

CBW

sign AL ‑> AH
flagl

XCHG AX, BX

interchange registers BH
flagl

SUB AL, # 123

AL = char ‑ 123

CBW

sign AL ‑> AH = flag2

OR AH, BH

AH = flagl or flag2

xe HG AL, AH

AL = ‑flag

NO T AL

AL = flag

CBW
\

convert B‑ to 16‑bit flag

PUSH AX

flag ‑> TOS

NEXT END‑CODE

terminate definition

Forth Dimensions M.1,2

The preceding test went well‑we can test efficiently

Upon exiting, we restore DI with BX Di, as the last instruc​

whether a character is lower case [15]. To proceed, we next
tion preceding NEXT END‑CODE. Conversely, a header suitable

require a looping construct. The one we used in STIB will do
for Quick Basic would look like [16] [see Listing Eight] and the

fine, because once again the loop will execute a predetermined
corresponding QB footer (to exit gracefully) would be

number of times. Again we must provide header code that

places the count (string length, in bytes) in the CX register,

POP DI

and the address of its first byte in BX. This time, however, we

POP BP
; restore registers

identify the header code as a separate section of the assem​

bler subroutine, in order to be able to replace it later with an

The complete program in F‑PC assembler then becomes

appropriate equivalent that respects the conventions of a lan‑
[Listing Nine].

guage other than Forth.

The subroutine is h , ard to read even with indented com​

In F‑PC the header will consist of the instructions:
ments (which is why we prefer high‑level language to assem​

bler), but it consists of the same parts as the high‑level defi‑

POP CX
\ count in CX
nition: a SETUP section that gets the count and origin of data;

POP BX
\ beginning of data in BX
a body that LOOPS through the string; a test that determines

PUSH DI
\ save DI (index) register
whether a character is a lower‑case letter, and if so, modifies

MOV DI, BX
\ start‑1 in DI
it to upper case; and a "footer" that restores whatever regis​

ters have been saved on the stack and exits gracefully. Note

we were able to eliminate three redundant instructions:

1
16.
Note: if we were trying to generate the same function for linking to C,

we would have to take into account the zero‑terminated structure of
XCHG AL, AH

strings in C, probably using a different looping method, since the
CBW

count would not be readily available.

16.
Abrash, op. cit., discusses in detail the pitfalls of assuming the
PUSH AX

instruction timings given by Intel.

17. Actually the test was performed on a 3086SX‑33 machine.
whose only purpose in the CODE version of Icase?was to

Convert an 8‑bit flag to a 16‑bit inte​

ger that could be left on the stack.The

code for UCASE is about as terse as such

Listing Eight

a routine can be made.

PUSH BP

; save BP

Since assembler supposedly provides

MOV BP, SP

use BP as a stack pointer
raw speed, it is interesting to examine

PUSH DI

save DI register
timings [16]. Looking up the number

of clock cycles per instruction for the

MOV BX, 6 BPI
; address of string descriptor to BX reg
Intel 80286 [171, we find [Listing Ten],

; Note: don't need to initialize CX

The instructions labeled "assembler

MOV CX, 0 BX]
; count in CX reg
directive" execute during compilation

ADD BX, 2
; offset to string origin in BX
and carry no run‑time overhead. Since

the header and footer are executed

Listing Nine

once, their 25 clock cycles are imma‑ 1

CODE UCASE

start header
terial for reasonably long input strings.

POP CX

\ get count
Converting a lower‑case to an upper​

POP BX

\ get origin
case letter evidently requires 42 clock

PUSH DI

\ save DI
cycles, i.e., about 1.3 [tsec on a 33 MHz

MOV DI, BX
end header, start body
machine. The test loop

HERE

begin loop

INC DI

\ point to next byte

TESTO

MOV BL, 0
DI]
\ get byte
0 DO
PAD UCASE LOOP

MOV AX, # 96
test case
TEST1

SUB AL, BL

0 DO
10000 TESTO LOOP

CBW

XCHG AX, BX

allows us to iterate enough times to get

SUB AL, # 123

meaningful data: saying 10 TEST1 it​

CBW

erates 105 times. The time to convert

AND AHf BH
AH = 171710
45 characters is 7 seconds, giving a

AND AH, # 32
\AH = 32 if lcase, 0 elSE per‑character time of 1.5 ~tsec, in rea‑

SUB 0 1 DII, AH
\ convert letter in $
sonable agreement with the estimate

LOOP

loop if CX > 0
from machine cycles. This is 24 times

end body
faster than the high‑level Forth version;

footer
optimization is definitely worthwhile

POP DI

\ restore DI
when we have many strings to convert,

NEXT
end footer

For completeness, here is a version

END‑CODE

that works with (zero‑terminated)

10

Forth Dimensions XXI.1,2

strings in C. There are two obvious ways to approach the prob‑
zero‑terminated string, the revised upper‑case function is vir​

lem: first, modify the loop in UCAS E so it terminates when the
tually identical to its predecessor [Listing Twelve].

byte fetched is 0 (not ASCII 0). Alternatively, if we had a fast

To test these, we need words that input and print C‑like

way to determine the string's length, we could use the preced‑
strings [Listing Thirteen].

ing code unmodified. Now, we know only the beginning ad‑

A quick interactive test [is shown in Listing Fourteen].

dress of a C string, so to determine its length we must search it

Of course, if we had to replicate the steps and tests of

until we find the terminating character, incrementing a counter
GET ‑ LEN in assembler, it would obviously be better to rewrite

as we go. In high‑level Forth, the subroutine is [Listing Eleven]
UCASE. C entirely, Fortunately, the 80x86 chips have a spe​

and is very slow. Given a function to compute the length of a
cial instruction pair, SCASB and REPNZ, that speed up certain

Listing Ten

CODE UCASE

0 (assembler directive)

POP CX

5

POP BX

5

PUSH DI

3

MOV DI, BX

2

total

15 for header

HERE
0 (assembler directive)

INC DI

2

MOV BL, 0 [DII

5

MOV AXf # 96

2

SUB AL, BL

2

CBW

2

XCHG AX, BX

3

SUB AL, # 123

3

CBW

2

AND AH, BH

2

AND AH, # 32

3

SUB 0 [DI], AH

7

LOOP

9

total
= 42 for body

POP DI

5

NEXT

5 (depends on the Forth)

total
= 10 for footer

END‑CODE
0 (assembler directive)

Listing Eleven

GET_LEN

beg ‑‑ len)

DUP

beg
beg)

BEGIN

\ start indefinite loop

DUP C@
\ get
char

0<>
(beg
adr flag)

WHILE
1+
(beg adr+l)

REPEAT

(beg end+l)

loop until character is 0

SWAP

len)
compute length

Listing Twelve

UCASE.C
beg

DUP
GET_LEN

0 DO

work left to right thru string

DUP C@

(
‑‑‑ adr char)
\ get char

DUP
lease?
adr char flag)

32 AND

adr char
32 if lease 1 0 else)

subtract 32 from lease letters only

OVER C!
replace modified character

1+
LOOP
increment address by 1 and loop

DROP ;
\ clean up stack

Forth Dimensions M.1,2

1

string operations. The Forth assembler definition using these
zero‑terminated strings (and, for all 1 know, one may be avail​

instructions would then be [Figure Fifteen],
able), there does not seem to be any reason to factor out this

This is a bit long and complicated, and no doubt will get
functionality, merely to re‑use the code designed for counted

longer and more complex when the boilerplate headers and
strings. Here is a situation where recoding UCASE. C from

footers that respect C conventions are added. Unless there is
scratch is the more efficient approach.

a specific need for a function that determines the lengths of

Once again we begin by prototyping in high‑level Forth,

Listing Thirteen

$011

(‑‑ adr)

input 0‑terminated string

[CHAR]
WORD
get input

DUP

$adr $adr)

1+
PAD

ROT
C@
get length

DUP >R

save it temporarily

CMOVE

\
move text to scratchpad

PAD R>
OVER +
(‑‑ beg end+l)

0 SWAP
C!
\
terminate with 0

$0.

adr

print 0‑terminated string

DUP
GET LEN
TYPE

Listing Fourteen

$T' Here is a test string of 37 characters!" ok GET LEN . 37 ok PAD $0. Here is a test string of 37 characters! ok

Listing Fifteen

HEX

CODE
GET_LEN
adr
len) \
get length of 0‑terminated $

POP BX

adr ‑> BX

PUSH DI

save state

PUSH ES

save "extra" segment descriptor

MOV AX, DS

\ there is no MOV ES, DS instruction

MOV ES,
AX

point to data segment

MOV CX, # FFFF

largest possible string

MOV DI,
BX

load offset

XOR AL,
AL

AL = 0

REPNZ

SCASB

go thru $ until 0 byte found

SUB BX,
DI

compute length

NEG BX

POP ES

restore state

POP DI

PUSH BX

result on stack

NEXT END‑CODE

DECIMAL

Listing Sixteen

UCASE.C

beg

BEGIN

start indefinite loop

DUP C@

(‑‑ adr char)

DUP 0<>

‑‑ adr char flag)

WHILE

haven't reached end

lease?

adr flag)

~32
AND

adr
‑32 1 0)

OVER

+C!
modify char in place

1+
‑‑ adr+l)

REPEAT
loop until char = 0

DROP

clean up stack

12

Forth Dimensions XX1.1,2

