
The next test stage consisted of adding the machine code

using the phrase j be s(0 1 [20] which is then added to the

to perform one iteration. The result is shown below. I have

offsets indexed by registers ebx and edi, Note that the array

not yet installed either the looping construct or the code to

index seems to be multiplied by 4 (bytes) as for 32‑bit preci​

clean up the stacks afterward. [Listing Twenty‑seven]
sion, However, at this storage step, the value in ebx is 2n be​

Note that at this point I added the finit step into the

cause ebx has been decremented once. So in fact the subrou​

subroutine instead of performing it by hand. But this time all

tine is written to store 64‑bit floating‑point numbers‑vital

did not go well. The sum that has been computed is wrong‑

because the magnitude of the un‑normalized functions (not

it is 158 rather than 79 as it should have been. The reason is

to mention that of the normalization surn) can grow easily

easy to see: I had a misconception that this term would be

past the numbers accommodated in IEEE 32‑bit precision.

computed last, using 2n‑ 1 and j,,., rather than before j,,., using

In fact, the first dec ebx instruction (leaving 2n in ebx)

2n+1 and j,. The fix is simple, namely to modify the initial‑

marks the beginning of the loop. The second dec ebx in​

ization sequence to load 0 rather than 2n+I for the initial

struction marks the last computational step of the loop. We

sum. Here is the fixed result [Listing Twenty‑eight],
label the beginning of the loop with the assembler's local

Now all is correct. We are ready to add the code to simu‑

label facility (the phrase L$1:) and use the Intel i ns ("jump

late BEGIN ... UNTIL as well as that needed to clean up the not sign") instruction to loop back to it when the decrement

various stacks, Note that, at the beginning of an iteration,

operation has not changed the algebraic sign of the index in

the current value of the Bessel function (not yet properly nor‑

the ebx register (that is, while 2n‑1 > 0).

malized, of course) gets stored in its proper array element of

Finally we must clean up the stacks, The exit value of the

the array j be s(. This is done by computing the base address

index (4) needs to be replaced in the ebx register (which is

used as the top of the data stack by Win32Forth) by whatever

Listing Twenty‑eight
was on top of the stack before entering the subroutine. This

is accomplished by the pop ebx instruction. Since it does

3 . 7eO ok
not particularly matter when this is done, we perform this last.

iterate ok.

. 3 [1] 77 ok.
20. This notation was introduced in my book Scientific Forth: a modern
I

language for scientiflc computing (Mechum Banks Publishing, Ivy, VA

fpush f

21 .3514
ok.
1992) and has been adopted as standard for the Forth Scientific

fpush f

1.00000
ok.
Subroutine Library Project organized by Skip Carter.

fpush

f. 77.0000
ok.

fpush

f. 79.0000
ok.

fPU3h

f. 3.70000
ok.

see iterate

ITERATE IS CODE

3712C 9BDBE3
finit

3712F 8B8F3CC70100
mov
ecx
FSP [edil

37135 83E908
sub
ecx
8

37138 OF8840000000
is
ITERATE

3713E DD84394CC70100
fld
double FSTACK [ecx] [edil

37145 898F3CC70100
mov
ESP [edij , ecx

3714B

53
push
ebx

3714C

6A4F
push
4F

3714E

D9EE
fldz

repaired step

37150

DB0424
fild
dword [esp]

37153

D9EE
fldz

37155

D9E8
fldl

37157

5B
POP
ebx

37158

FFCB
dec
ebx

3715A DD949FDC6FO300
fst
double JBES([edil [ebx*41

37161 D9C9
fxch
ST(l)

37163 D9C1
fld
ST(1)

37165

D8CB
fmul
ST , ST(3)

37167

D9CO
fld
ST(O)

37169

D8CB
fmul
ST ,
ST(3)

3716B

DEC5
faddp
ST(5)

3716D

D8175
fdiv
ST , ST(5)

3716F

DEEI
fsubrp
ST(l)

37171

D9E8
fldl

37173

DCEB
fsub
ST(3) , ST

37175

DEEB
fsubp
ST(3)

37177

FFCB
dec
ebx

37179

E908000000
imp
ITERATE

3717E

C7C650CF0100
mov
esi
1CF50

37184

03F7
add
esi
edi

18

Forth Dimensions XXI.1,2

The only number we wish to retain from the FPU stack is the
high‑level word sphbes given in the listing below, it worked

sum, so we simply pop the top three items with three repeti‑
perfectly first crack out of the box. The entire test sequence,

tions of the instruction fstp st(O);thenwemovethesum
including the mistake I had to correct, lasted 15‑20 min​

to the in‑memory fstack (simply copying the code sequence
utes. I do not believe MASMO or TASMO could come within

from f p u s h for this purpose); and finally we drop x from the
an order of magnitude of this time.

FPU stack with one more repetition of f stp st (0) .
With the completion of the spherical Bessel function rou​

Believe it or not, when I added this code and tested the
tine, I end this call to assembly. Class dismissed.

Appendix

FALSE [IF]

Regular spherical Bessel functions j_n(x), n=0‑39

(Assembly language version suitable for Win32Forth)

(D
J.V. Noble 1999. May be used for any purpose as long as this copyright notice is maintained.

Uses Miller's method of downward recursion, as described in Abramowitz & Stegun, "Handbook of Mathematical Functions" 10.5 ff. The recursion is

j(n‑1) = (2n+l) j(n) / x ‑ j(n+l)

The downward recursion is started with j40 = 0, j39 = 1 . The resulting functions are normalized using

Sum (n=O to inf) f (2n+l) * jn(x)^2) = 1

Usage: To calculate jO‑j39 say, e.g.,

3.OeO
sphbes

To access/display a value say, e.g.,

I
jbesf 3)
F@
F. .1520516620
ok

[THEN]

marker
‑jbes

include
arrays.f

40 long 1 dfloats larray jbesf FVARIABLE x

HEX

code ITERATE
f: X

initialization

finit

clear fpu stack

mov
ecx, FSP [edi]

sub
ecx, # B/FLOAT

j3
L$2

error handler

fld
FSIZE FSTACK [ecxl [edi]
87: x)

mov
FSP [edil, ecx

push
ebx

push
4F

79d on data stack

fldz

(87: 0 x)

fild
dword 0 [esp]

87: 79 0 x)

fldz

fldl

87: 1 0 79 0 x)

Forth Dimensions XXI.1,2
19

POP
ebx

ebx = 7 9

(87: jn jn+l 2n+l sum x)
\ end of

initialization

L$1:
dec
ebx

\ loop begins here

fst
double jbes{ 0
ebx* 4] [edi]

fwait

\ may be needed

fxch
st(l)
87: jn+l in k=2n+l sum x)

fld
st(l)
87: jn jn+l jn k sum x)

fmul
st(O), st(3)
87: k*jn jn+l in k sum x)

fId
st (0)
87: k*jn k*jn jn+l in k sum x)

fmUl
st(O), st(3)
87: k*jn^2 k*jn jn+l in k sum X)

faddp
st(5), st(O)
87: k*jn jn+l in k sum' x)

fdiv
st(O), st(5)
87: k*jn/x jn+l in k sum' x)

fsubpr

st(l), st(O)
this is a sp. error in 486asm.f

1‑1.

‑‑ should be fsubrp

fldl

fsub
st(3), st (0)

fsubp
st(3), st(O)
87: jn‑1 in 2n‑1 sum' x)

dec
ebx

ins
L$1

loop ends here

(87: jO jl ‑1 sum X)

fstp
st(O)
87: jl 1 sum x)

fstp
st(O)
87: 1 sum x)

fstp
st(O)
87: sum x)

mov
ecx, FSP [edil

sum‑>fstack

fstp
FSIZE FSTACK [ecx] [edi]

fwait

add
ecx, # B/FLOAT

mov
FSP [edil, ecx

fstp
st(O)
87: x

POP
ebx
(‑1 __)
1

imp
L$3

L$2
mov
esi, # ' FSTKUFLO >body
error handler

acid
esi, edi

L$3:
next,

end‑code

DECIMAL

DOX=0

handle the special case x=0

FDROP

F1.0

JBES{ 0 } DF!

10 1

DO
FO.0
JBES{ I
DF!
LOOP

NORMALIZE

f: sum

FSQRT

F1.0
FSWAP
F/

39 0
DO
FDUP
JBES{ I
DUP F@ F*
F! LOOP

FDROP

SPHBES

f: X

FDUP
FO=

x=0 ?

IF
DO X=0
ELSE
ITERATE NORMALIZE
THEN

20
Forth Dimensions XXI.1,2

[image: image1.png]John R.Hart » Tempe. Arizona
jhart@testra.com * www.testra.com

Virtual ardware Definition Language.,,,,,

Using Forth as VHDL

Abstract

A set of VHDL extensions to Forth lets programmers define hardware in the same language with which they write software. Hardware defined in Forth can be verified by executing the hardware‑definition words at the command line or by writing special Forth words to test their operation. The use of the same language for hardware and software simplifies the task of swapping hardware and software functions during optimization.

Introduction

Computer‑aided design has become an essential part of product development, and several different hardware definition languages (HDLs) are marketed for that purpose, but I wanted to define the hardware in the same language the software was written in. We have been using Forth to define PAL equations for about ten years using a set of extensions to Forth called CARMAP. When we started using complex programmable logic devices (CPLDs), it seemed more logical to extend CARMAP than to buy an off‑the‑shelf compiler and learn a new language.

With each improvement, CARMAP has moved closer to being a complete high‑level design system. A program to fit the design into the PLD was added along with a method of defining what inputs an output needs. When the upgrades were finished, the compiler could automatically reduce a virtual description to logical pieces, and fit them into the macrocells of the PLD,

After the fitting is complete, the macrocells and their outputs have to be placed and arranged so all outputs can be routed to the places they are required. This problem is somewhat like solving a multi‑dimensional Rubik's Cube.

Why use Forth to simulate hardware?

1. A software model can be completed much faster than hardware, 2 Application code can be tested before the hardware is designed. 3. It is easy to display or modify internal states. 4. Diagnostic macros can be easily implemented. 5. Resources can be optimized early in the design.

Why use Forth as a VHDL?

1. To reduce the time needed to create the system. 2. So Forth can be the hardware description language. 3. So the project can use one uniform language. 4. To support the extensibility of the design. S.To enable interactive hardware design.

Forth Dimensions XXI.1,2

Designing logic with the Forth VHDL

1. Write a software simulation of the design. 2. Test the design. 3. Convert the software simulation into a hardware definition. 4. Compile the hardware definition into logic equatiom. 5. Fit the logic equations into the device. 6. Verify that the logic equations work correctly. 7. Route the signals and assign the 1/0 pins. 8. Convert the routed design into a fuse map.

Simulation

The simulation of a design allows interactive analysis of many aspects of the hardware including complexity, functionality, timing, and performance. If the application program for the proposed hardware is also written in the same language as the hardware, hard and soft components can be interchanged during optimization.

I

The software model

The software model is like a black box, it doesn't matter how it works as long as it works correctly, The main advantage of the software model is that structural details of the PLD can be ignored as ideas are evaluated early in the design stage.

The hardware definition

After the software model has been evaluated, the design is turned into a hardware definition. The hardware definition is an expanded version of the software model. Programs will run a little slower on it, but they should function the same.

For a design to match up with the device structure, it must be partitioned correctly, Partitioning is an intuitive process that is difficult to automate, so information relating to hardware structure needs to be included in the definition.

The conversion to the hardware definition involves breaking complex functions into smaller parts that will fit in a single layer of logic. A library of words to expand complex functions could be built to aid in this task. Global variables must be created for the output nodes of all the logic blocks, and procedures must be written that will function the same as the components would behave,

The inputs and outputs of the procedures are passed via the global variables that hold the state of the model. These variables have three parts: the first holds the present state, the second holds the future state, and the third holds the don't‑care flags. The global variables also contain information about register clocking and propagation delays.

The author is doing design work forTestra Corp., which is manufacturing an integrated motion control system for industrial and robotic applications.The system is based on a Forth processor designed using the HDL described here.

I

I

21

Verification of the model
run efficiently. Because of Forth's simple structure, a software

Debugging the simulation of a design will require a set of
model can be completed very quickly, and it is easy to adapt it

tools that are "tuned" to the characteristics of the design. In
to changes in the instruction set as the design matures.

a non‑extensible language, this might be done using some

People who work with Forth have long known it is a good

form of macros; but when debugging a simulation in Forth, a
application language; our experience has shown that its ad​

lot of the tools exist even before the job is started. Simple
vantages also apply when it used as a VHDL.

things can be interactively tested by keying in and running

short programs.
Bibliography

The simulation process involves executing all the simula‑
"VHDL and Verilog fundamentals‑ expressions, operands and

tion procedures, then copying all the future states into the
operators."

present state. The relationship of timing and propagation is
Douglas J. Smith, EDN, 4/10/199 7.

established by the order in which the state of the global vari​

ables is changed.
"VHDL & Verilog Syntax & Semantics Handbook."

Johan Sandstrom, Integrated System Design Magazine, Jan. 1996.

Things to consider when creating the hardware model

1. Truth table size. The size of a truth table is 21, where n is
"Vhsic Hardware Description Language."
I

the number of inputs. A function with more than 20
Steven H. Leibson, EDN, 3/16/1989.

inputs will take a long time to compile, and it should be

factored into smaller parts to reduce the number of
"Getting a handle on HDLs."

inputs.
Brian Dipert, EDN, 5/7/1998.

2. Input relationships. The inputs needed for an output can

be specified to reduce the initial truth table size.
"Adopting VHDL for PLD design and simulation."

3. Specify don't‑care terms. In many cases, there are places in
Troy Scott, EDN, 4/9/1998.

a function table that are not used. If the unused space is

flagged as don't‑care, a simpler solution with a reduced
"Hug an XOR gate today: An introduction to Reed‑Muller

number of terms may be possible.
Logic."

Clive "Max" Maxfield, EDN, 3/1/1996.

How the logic compiler works (CARMAP)

The logic compiler converts each of the functions described
Appendix A. CARMAP Word Set

1
in Forth into a set of logic equations for each output bit of the

function. This is a conceptually simple process that involves
Variables: (Items)

i
expanding the function into a truth table and then reducing
MAX:GLB:INPUTS

the number of terms in the truth table to the minimum.

The function is mapped into the truth table using the in‑
//0 Definitions:

puts that are related to the output. After the function has been
IO‑GRCUP "name"

mapped, the table is scanned for unused inputs. If any unused

inputs are found, they are removed from the table. Each input
INPUT "name" [START BITS

that is removed cuts the table size by half.

The truth table is then converted into logic equations by
OUTPUT "name" [START BITS CLOCK XORS TERMS

an exhaustive scanning process that tries all possible combi‑

FLIP USES USEX SEL SELXI

nations of inputs and compares them with the truth table.

OE PTCLOCK are Lattice‑specific commands I

The first step is to search the table for a true output. When an

output is found, all sets in which it resides are tested for corre‑
BITS (n

lation with the other outputs. The largest true set is saved, and
A word that defines the number of bits used in an INPUT or

the bits within it are marked as solved. Then the next unsolved
OUTPUT.

output is found and the process repeats until finished.

The second step of the transformation is to delete the sets
START (n

in which all elements have more than one solved mark. This
A word used in conjunction with BITS that sets the starting

gives something close to the ideal two‑level array. Fitting the
bit number. If START is not specified, the first bit number

logic into a FPGA would require a third step to convert this
will be zero.

ideal array into a multi‑level array that would fit into their

finer structure. This could be accomplished by recursively fac‑
CLOCK "name"

toring gates from the high‑level sets and ORing them together.
A word that defines the clock for registered outputs.

Conclusion
XORS (n ‑)

Forth provides a good foundation for a VHDL system be‑
A word that sets the maximum number of inputs to be tried

cause Forth is an extensible virtual interpreter. Most every‑
in the XOR term,

one who works with Forth knows its unique features can en​

hance software productivity. My experience has shown it to
TERMS (n

be very useful when working with variable hardware, as well.
A word that sets the maximum number of inputs to a logic

The Forth inner interpreter is a very simple list processor block. that requires only three pointers, two registers, and an ALU to

22
Forth Dimensions XXI.1,2

FLIP (m ‑)
>> (io ‑) 1' label"

A mask that defines which output bits in the truth table will
The top element on the stack is moved to the input and out​

be inverted.
put registers. (This word is used for design verification.)

USES (m ‑) "name"
>>O (o ‑) " label"

A bit mask that defines what bits are used by an output. A
The top element on the stack is moved to the output register.

counter is a function where each output bit depends on all of

the bits less than it. The USES mask is rotated to the position >>X (x ‑)‑‑‑label"

of the current output bit. The upper bits in the mask are ro‑ The top element on the stack is moved to the don't‑care reg​

tated into the lower bits so they will be used in counting ister.

functions,

>>OX (d x
label"

USEX (m

"name"
The top element on the stack is moved to the don't‑care reg​

A bit mask that defines what bits should be tried in an XOR
ister, and the next element is moved to the output register.

function. This word is used in conjunction with USES, and

the mask rotates the same as for USES.
O>>
o
label"

The output register is copied to the stack.

SEL (m
"name"

A bit mask that defines a set of bits in a fixed position that
TRUTH‑TABLE:

(io‑group_ads

are used as a selector. This word is like USES but the mask
"simulation word"

does not rotate .
Builds the trutl~table for a function, and solves the logic equa‑

tions.

SELX (m
"name"

A bit mask that defines what bits should be tried in an XOR
MAKEMACS

function. The mask stays in a fixed position. This word is
Solves all of the logic equations in a design.

used in conjunction with SEL.

Hardware Simulation Words

OE

A word that defines an output‑enable term for a Lattice de‑ INIT‑LOGIC

vice.

Must be done before defining nodes.

PT.CLOCK

NODE "name"

A word that defines a clock term for a Lattice device.
Creates a single‑bit, self‑fetching variable called %name.

END‑IO‑GROUP

NODES (s n
"name"

A word that closes the 1/0 group.
Creates a multiple‑bit, self‑fetching variable called '‑.name,

Software Simulation Words
CLOCK "name"

Creates a single‑bit, self‑fetching variable called % % n ame,

INVERT (d ‑ d)

1

The logical NOT of the bits in a word.
UPDATE‑STATE

Updates the state of the outputs for all functions.

MAP[
(v
n

A word that creates an associative memory structure similar
EXECUTE~CLOCK

to a CASE statement.
Copies the state of the outputs to the inputs.

MAP (v a ‑)

SIMLDF

A word that inserts a token (v) and its associated value (a)
The name of the simulation vocabulary.

into the MAP structure.

Lattice‑specific words for defining 1/0 pins

1 MAP (a

A word that inserts the default value (v) into the MAP struc‑
CLKMAC
(n io‑group_ads ‑) "name" FORGET

ture, and finishes the mapping function.
I'io‑group_name"

1 :
(‑ a)

IOMAC
(n io‑group_ads ‑
"name" FORGET

A word that changes the state to compilation and returns the
I'io‑group‑name"

of t

addres~) he start of the compiled string.

IMAC
n io‑group ads ‑
"name" PORCET

I'io‑group‑name"

A word that inserts a next into the compiled string and

changes the state back to interpret.

Forth Dimensions XX1.1,2

23

Code Space

Code space contains lists of code that define primitives and handle interrupts. Three different conditions can be selected to control branching in code space. PC branching takes one cycle, but the code after a branch executes so, in some cases, a null has to be placed there, making the branch take two cycles.

[image: image2.png]John R.Hart * Tempe. Arizona
jhart@testra.com * www.testra.com

Reconfigurable Architecture Computation Engine

TM

RACE

Abstract

Because Forth's performance isn't compromised by a lim​ited number of registers, it was the logical choice for a proces​sor in currently available PLDs. In the design process for this project, Forth words were coded in the primitive set and used as a key benchmark. The processor was optimized by repeat​edly modifying, compiling, and testing the model until it could execute Forth words at four MIPS and fit into the PLD with room left for the state machines needed by the application.

Forth was used to simulate the design. Forth was used to define the hardware. Forth was used to convert the design into logic equations. Forth was used to fit the logic equations into the PLD.

ort was used to route the PLD's internal connections. Forth was used to verify the logic equations. Forth was used to assemble the application code. Forth was used as the metacompiler.

Introduction

The design process began by making a software simula​tion of a very simple Forth processor, called the miniForth. Getting the miniForth up and running was one of the easiest parts of the job: the simulation code for the 27 primitives needed to build the Forth kernel took only a few days to write and debug. The miniForth was the starting point in an evolu​tionary process that involved running the application on the simulator, finding bugs, and correcting shortcomings. The viability of this method was clearly evident when the proto​type hardware booted up and said "OK" without a glitch.

Description

The RACE is a 16‑bit RISC processor that will execute code at 25 to 50 MIPS, using currently available parts. It fits into an ispLS11048 PLD with about one third of the device free for application‑specific logic. In our application, the remaining macro cells were used for state machines to control timing and motor currents.

The RACE is a Harvard architecture machine with two memory spaces, one for code and the other for data. In the present configuration, the PC is twelve bits, so code space is limited to 8K bytes; and the IP is fifteen bits, making 64K bytes available for programs.

Data Space

Data space contains the stacks, programs, and data for the application. The first 24 locations are dedicated for system variables or pointers. The address for these variables can be loaded in one cycle. The loaded value can be used as an ad​dress or a constant, The return stack is assigned locations from 256‑382 and the data stack is assigned locations from 384​510. Locations from 65K‑128K are used for application‑spe​cific data. DRAM is available for applications needing a large memory space.

I

Forth Primitives

Most Forth primitives take from four to eight code words, so Forth runs about 4 MIPS. Code operators were devised so they could be combined to build efficient Forth primitives and make best use of the PLD's limited resources, so some things were done in unconventional ways. Functions like AND, OR, 1+, 2*, and 2 / are easy to do in one cycle, ‑ ‑‑ ‑ __‑‑‑

had to be broken into multiple parts. First, the operands are half‑added using an XOR command that takes one cycle. T en a special command is executed four times to complete he function and propagate the carry through all 16 bits.

The OBRANCH primitive is built using a command that cop​ies the jump address into the IP if the top of the stack is equal to zero. NEXT is done by a command that conditionally loads the IP, depending on the state of bit zero in the instruction. If the bit is zero, the instruction is a call, and the PC is loaded with the address of the nesting code. If the bit is one, the rest of the bits in the instruction are loaded into the PC.

The RACE has two interrupts, one for the timer and one for external events. The branch‑on‑interrupt is part of the next command. To maintain an interrupt latency of less than two microseconds, there can be no more than 128 clocks be​tween NEXT commands.

Multiplication is done by adding and shifting, and divi​sion is done by subtracting and shifting; both take more time to execute than the maximum allowed interrupt latency, so a conditional NEXT command called (LOOP?) was created to allow interruptable loops. Words that use the (LOOP?) have two CFAs. The first points to the beginning of the code; the second points to the start of the code that is repeated. If RP6 1 is high, (LOOK) reloads the PC with the CFA pointing to the start of the loop; if RP6 is low, the PC is incremented, and the code following the loop is executed.

Commands

The majority of the commands were made for building Forth primitives, but there are several application‑specific commands for booting, accessing DRAM, loading the timer, doing 1/0, loading code memory, and addressing local variables.

Copyright co 1999Testra Corp.The author is doing design work forTestra Corp,, which is manufacturing an integrated motion control system for industrial and robotic applications.The system is based on a Forth pro​cessordesicin d using the HDL described here.

Forth Dimensions XXI.1,2

