
F
ORTH was developed as a program
ming tool to solve real-time control
problems.1 While it has never been

formally defined as a programming lan
guage, I think FORTH is mature enough
now that it can be defined rigorously.
The wide-spread use of this powerful
tool requires that a common base be es
tablislied to facilitate the exchange of
programs and ideas in a standardized lan
guage form. The publication of FORTH-
79 Standard2 clearly reflects this neces
sity. To define FORTH as a programming
language also helps us to focus our atten
tion on the basic characteristics of
FORTH, and to understand it more fully.

This article will present the defini
tion of FORTH in the Backus Normal
Form (BNF) notation, The basic syntax is
presented in Table I, in which the focal
point is the definition of “word”. Some
detailed clarifications on colon defini
tions and defining words are worked out
in Tables 11 and Ill. Explanatory notes
are arranged by section to highlight some
problems not clearly expressed in the for
mal definitions.

Programming Language

A programming language is a set of
symbols with rules (syntax) of combining
them to specify execution procedures to
a computer. A programming language is
used primarily to instruct a computer to
perform specific functions. However, it
can also be used by programmers to docu
ment and to communicate problem solv
ing procedures. The most essential in.
gredients of a programming language are
therefore the symbols it employs for ex
pressions and the syntax rules of combin
ing the symbols for man-machine or
man-man communications.

FORTH uses the full set of ASCII
characters as symbols. Most programming
languages use subsets of ASCII characters,
including only numerals, upper-case al
phabets, and some punctuation charac
ters. Use of punctuation characters differs
significantly from language to language.
Non. printable characters are generally re
served L’xclusively for the system and arc
not available for language usage. in ens
ploving the full ASCII set of characters,
FORTH thus allows the programmer a

much wider range of usable symbols to
name objects. On the other hand, the pro
lific use of punctuation characters in
FORTH makes comprehension very diffi
cult;by uninitiated programmers.

Only four of the ASCII characters
are used by FORTH for special system
functions and are not for programming
usage: NUt. (ASCII 0), RUB (ASCII
127), CR (ASCII 13), and SP (ASCII 32).
RUB is used to delete the previously en
tered character, it is used at the keyboard
interactively to correct typing errors.
NUt., CR, and SP are delimiting charac
ters to separate groups of characters to
form words. AU other characters are used
to form words and are used the same
way Non-printable characters are treated
the same as printable characters. Because
non-printable characters are difficult to
document and communicate, their usage
is discouraged in normal programming
practice. However, the non- printable
characters are very useful in maintaining a
secured system. For terminals that have
function keys, their control sequences
may be used as the names of the opera
tions each performs.

Words
Words are the basic syntactical units

in FORTH. A word is a group of charac
ters separated from other words by de
limiting characters. With the exception of
NUL, CR, SP and RUB, any ASCII char
acter may be part of a word. Certain
words for string processing may specify a
regular character as the delimiting charac
ter for the word immediately following it,
in order to override the delimiting effect
of SP. However, the delimiting effect of
CR and NUL cannot be overridden.

The usage of ‘word” in FORTH
literature is very confusing because many
quite different concepts are associated
with it. Without sorting out these differ
ent aspects of “word” into independently
identifiable entities, it is impossible to ar
rive at a satisfactory description of this
language. Here the word is defined as a
syntactical unit in the language, simply a
group of characters separated from other
words by delimiting characters. Seman
tically (concerning the meaning of a
word), a word in FORTH can be only one
of three things: a string, an instruction, or
a number.

A FORTH program is thus simply a
list of words. When this list of words is
given to a computer with a FORTH
operating system loaded in. the computer

will be able to execute or interpret this
list of words and perform functions as
specified by this List. The functions may
include compilation of new instructions
into the system to perform complicated
functions not implemented in the original
operating system.

A string is merely a group of charac
ters to be processed by the FORTH com
puter. To be processed correctly, a string
must be preceded by an instruction which
specifies exactly how this string is to be
processed. The string instruction may
even specify a regular character as the de
limiting character for the following string
to override the effect of SP, It is often
appropriate to consider the string to e
an integral part of the preceding instruc
tion. This would disturb the uniform and
simple syntax rule in FORTH and it is
better to consider strings as independent
objects in the language.

String processing is a major compo
nent in the FORTH operating system be
cause FORTH is an interpretive language.
Strings are needed to supply names for
new instructions, to insert comments into
source text for documentation, and to
produce messages at run-time to facilitate
human interface. The resident FORTH in
structions for string processing are all
available to programmers for string mani
pulations.

A number is a string which causes the
FORTH computer to push a piece of data
onto the data stack. Characters used in a
number must belong to a subset of ASCII
characters. The total number of charac
ters in this subset is equal to a “base”
value specified by the programmer. This
subset starts from 0 and goes up to 9. If
the base value is larger than 10, the
upper-case alphabets are used in their
natural sequence. Any reasonable base
value can be specified and modified at
run-time by the programmer. However, a
very large base value causes excessive
overlapping between numbers and in
structions, and a “reasonable base value”
must avoid this conflict in semantical in
terpretation.

A number can have a leading
sign to designate data of negative value.
Certain punctuation characters such as

are also allowed in numbers depend.
ing upon the parucular FORTH operating
system.

The internal representation •jf num
bers inside the FORTH com’uter de
pends upon ii1iOirnenI.ition. The most
common format IS a h-hit nieecr ur

Formal Definition
of FORTH

by C.H. Ting

Ting. O!flrc hntirpriacs. Inc., / .?Q6
Sun llarcu, C-I)J.1i).

ii. irnhr 4. I-SDrIIJrv i2 268

ber. Numbers are put on the data stack to
be processed. The interpretation of a
number depends entirely on the instruc
tion which uses the number. A number
may be used to represent a true-or-false
flag, a 7-bit ASCII character, an 8-bit
byte, a 16-bit signed or unsigned integer.
a 16-bit address, etc. Two consecutive
numbers may be used as a 32-bit signed
or unsigned double integer, or a floating
point number.

FORTH is not a typed language in
which numerical data types must be de
clared and checked during compilation.
Numbers are loaded on the data stack
(hereafter called the “stack”) where all
numbers are represented and treated iden
tically. Instructions using the numbers on
the stack will take whatever they need for
processing and push their results back on
the stack. It is the responsibility of the
programmer to put the correct data on
the stack and use the correct instructions
to retrieve them. Non-discriminating use
of numbers on the stack might seem to be
a major source of errors in using FORTH

20

for programming. In practice, the use of
the stack greatly eases the debugging pro
cess in which individual instructions can
be thoroughly exercised to spot any dis
crepancies in stack manipulations. The
most important advantage gained in the
uniform usage of data stored on the stack
is that the instructions built this way can
be context-free, allowing them to be re
peatedly called in different environments
to perform the same task.

Numbers and strings are objects or
nouns in a programming language. Typed
and named numbers in a program provide
vital clues to the functions and the struc
tures in a program. The explicitly defined
objects or nouns make statements in a
program easy to comprehend. The impli
cit use of data objects stored on the data
stack makes FORTH programs very tight
and efficient. However, statements in a
program deprived of nouns are difficult
to understand. For this reason, the
most important task in documenting
a FORTH program is to specify the stack
effects of the instructions, indicating
what types of data are retrieved from the
stack and what types of data are left on
the stack upon exit.

Standard Instructions
In a FORTH computer, an instruc

tion is best defined as “a named, linked,
memory resident, and executable entity
which can be called and executed interac
tively.” The entire linked list of instruc
tions in the computer memory is called a
“dictionary.” Instructions are known to
the programmer by their ASCII names.
The names of the instructions in a
FORTH computer are words that a pro
grammer can use either to execute the in
struction interactively or to build (com
pile) new instructions to solve his pro
gramming problems.

In FORTH literature, instructions are
called “words,” “definitions,” or “word
definitions.” The reason that I chose to
call them “instructions” is to emphasize
the fact that an instruction given to the
FORTH computer causes immediate ac
tions performed by the computer. The in
structions in the dictionary are an instruc
tion set of the FORTH virtual computer,
in the same sense as the instruction set of
a real CPU. The difference is that the
FORTH instructions can be executed di
rectly and the FORTH instructions are
accessed by their ASCII names. There
fore, FORTH can be considered as a high
Level assembly language withan open in-

struction set for interactive programming
and testing. The name “instruction” cofl
veys more precisely the characteristics of
a FORTH instruction than ‘word” or

“definition,” and leaves “word” to mean
exclusively a syntactical unit in the lan
guage definition.

Instruction set is the heart of a
computer as well as of a language. In
all conventional programming languages,
the instruction set is immutable and
limited in number and in scope. Program
mers can circumvent the shortcomings of
a language by writing programs to per
form tasks that the native instruction set
is not capable of. The instruction set in
a FORTH computer provides a basis or a
skeleton from which a more sophisticated
instruction set can be built and optimized
to solve a particular problem.

Because the instruction set in
FORTH can be easily extended by the
user, it is rather difficult to define pre
cisely the minimum instruction set a
FORTH computer ought to have. The
general requirement is that the minimum
set should provide an environment in
which typical programming problems can
be solved conveniently. FORTH-79 Stan
dard suggested a convenient instruc
tion set as summarized in Table I. These
instructions provided by the operating
system are called “standard instructions,”
and are divided into nucleus instructions,
interpreter instructions, compiler instruc
tions, and device instructions.

User Instructions
Instructions created by a user are

called “user instructions.” There are sever
al classes of user instructions depending
upon how they are created. High level in
structions are called “colon instructions”
because they are generated by the special
instruction “:“. Low level instructions
containing machine codes of the host
CPU are called “code instructions” be
cause they are generated by the instruc
tion CODE. Other user instructions in..
dude constants, variables, and vocabu
laries.

Instructions are verbs in FORTH lan
guage. They are commands given to the
computer for execution. Instructions
cause the computer to modify memory
cells, to move data from one location to
the other. Some instructions modify the
size and the contents of the data stack.
Implicitly using objects on the data stack
eliminates nouns in FORTH programs. It

269 Dr. Dobb’s Journal, Number 64, February 1982

is not uncommon to have !ines of
FORTH text without a single noun. The
verbs-only FORTH text earns it the repu
tation of a “write-only” language.

FORTH is an interpretive language.
Instructions given to the computer are
generally executed immediately by the
interpreter, which can be thought of as
the operating system in the FORTH com
puter. This interpreter is called “text in
terpreter” or “outer interpreter.” A word
given to the FORTH computer is first
parsed out of the input stream, and the
text interpreter searches the dictionary
for an instruction with the same name as
the word given. If an instruction with
matching name is found, it is executed by
the text interpreter. The text intepreter
also performs the tasks of compiling new
user instructions into the dictionary. The
process of compiling new instructions is
very different from interpreting exist
ing instructions. The text interpreter
switches its mode of operation from
interpretation to compilation by a group
of special instruction called “defining
instructions,” which perform the func
tions of language compilers in conven
tional computers.

Syntax of these defining instructions
is more complicated than the normal
FORTH syntax because of the special
conditions required of the compilation of
different types of user instructions. The
syntax of the defining instructions pro
vided by a standard FORTH operating
system is summarized in Table II. The
most important defining instruction is
the “:“ or colon instruction. To define
colon instructions satisfactorily, a new
entity, “structure,” must be introduced.
This concept and many other aspects in
volving defining instructions are discussed
in the following subsections.

Structures and Colon Instructions
Words are the basic syntactical units

in FORTH language. During run-time
execution, each word has only one entry
point and one exit point. After a word is
processed by the interpreter, control re
turns to the text interpreter to process
the next consecutive word. Compilation
allows certain words to be executed re
peatedly or to be skipped selectively at
run-time. A set of instructions, equiva
lent to compiler directives in conven
tional programming languages, are used to
‘ ‘d small modules to take care of these

ptional cases. These modules are
structures.

A structure is a list of words bound
ed by a pair of special compiler instruc
tions, such as IF-THEN, BEGIN-UNTIL,
or DO-LOOP. A structure, similar to an
instruction, has only one entry point and
one exit point. Within a structure, how
ever, instruction or word sequence ca.
be conditionally skipped or selectively
repeated at runtime. Structures do not
have names and they cannot be executed
outside of the colon instruction in which
it is defined. However, a structure can be
given a name and defined as a new user
instruction. Structures can be nested, but
two structures cannot overlap each other.
This would violate the one-entry-one-
exit rule for a structure.

Structure is an extension of a word.
A structure should be considered as an
integral entity like a word inside a colon
instruction. Words and structures are the
building blocks to create new user in
structions from low level to high level. All
the instructions created at low levels are
available to build new instructions. The
resulting instruction set then becomes the
solution to the programming problem.
This programming process contains na
turally all the ingredients of the much
touted structure programming and soft
ware engineering.

Using the definition of structures,
the precise definition of a colon instruc
tion is: “q named, executable entity equi
valent to a list of .,:ructures.” When a
colon instruction is invokedi by the inter
preter, the list of structures is executed in
the order the structures were laid out in
the colon instruction.

When a colon instruction is being
compiled, words appearing on the List of
structures are compiled into the body of
the colon instruction as execution ad
dresses. Thus, a colon instruction is simi
lar to a list of subroutine calls in conven
tional programming languages. However,
only the addresses of the called subrou
tines are needed in the colon instruction
because the CALL statement is implicit.
Parameters are passed on the data stack
and the argument list is eliminated also.
Therefore, the memory overhead for a
subroutine call is reduced to a bare mini
mum of two bytes in FORTH. This justi
fies the claim that equivalent programs
written in FORTH are shorter titan those
written in assembly language.

Compiler instructions setting up the
structures are not directly compiled into
the body of colon instructions. Instead.
they set up vanous mechanisms such as

Code Instructions

Colon instruction allows a user to ex
tend the FORTH system at a high level.
Programs developed using only colon jn
structions are very tight and memory ef
ficient. These programs are also trans.
portable between different host comput
ers because of the buffering of the
FORTH virtual corn puter. Nevertheless,
there is an overhead in execution speed in
using colon instructions. Colon instruc
tions are often nested for many levels and
the interpreter must go through these
nested levels to find executable codes
which are defined as code instructions.
Typically, the nesting and unnesting of
colon instructions (calling and returning)
cost about 20% to 30% of execution
time. If this execution overhead is too
much to be tolerated in a time-critical
situation, instructions can be coded in
machine codes which will then be execut
ed at the full machine speed. Instructions
of this type are created by the CODE in
struction, which is equivalent to a
machine code assembler in conventional
computer systems.

Machine code representation depends
on the host computer. Each CPU has its
own machine instruction set with its par
ticular code format. The only universal
machine code representation is by num
bers. To define code instructions in a
generalized form suitable for any host
computer, only two special compiler in
structions, “,“ (comma), and “C,” are
needed. “C,” takes a byte number and
compiles it to the body of the code in
struction under construction, and “,“

takes a 16-bit integer from the data stack
and compiles it to the body of the code
instruction. An assembly code is thus a
number followed by “C,” or “,“. The
body of a code instruction is a list of
numbers representing a sequence of ma

chine codes. As the code instruction is
invoked by the interpreter, this sequence
of machine codes will be executed by the
host CPU.

Advanced assemblers have been de
veloped for almost all computers com
mercially available based on this simple
syntax. Most assemblers use names of
assembly mnemonics to define a set of
assembler instructions which facilitates

conditional tests and branch addresses in
the compiled codes so that execution
sequence can be directed correctly at run-
time. The detailed codes that are com
piled are implementation dependent.

270 Dr. DcSbs iournai. Numoe- 4. Febru:iry 1982

Constants, Variables, and Vocabulary
The defining instructions CON

STANT and VARIABLE are used to in
troduce named numbers and named mem
ory addresses to the FORTH system, re
spectively. After a constant is defined,
when the text interpreter encounters its
name, the assigned value of this constant
is pushed to the data stack. When the
interpreter finds the name of a prede
fined variable, the address of this variable
is pushed to the data stack. Actually, the
constants defined by CONSTANT and
the variables defined by VARIABLE are

still verbs in the FORTH language. They in
struct the FORTH computer to introduce
new data items to the data stack. How
ever, their usage is equivalent to that of
numbers, and they are best described as
“pseudo- nouns.”

Semantically, a constant is equivalent
to its preassigned number, and a variable
is equivalent to an address in the RAM
memory, as shown in Table II.

VOCABULARY creates subgroups of
instructions in the dictionary as “vocabu
laries.” When the name of a vocabulary is
called, the vocabulary is made the “con
text vocabulary,” which means it is
searched first by the interpreter. Normal
ly the dictionary in a FORTH computer
is a linearly linked list of instructions.
VOCABULARY creates branches to this

trunk dictionary so that the user can
specify partial searches of the dictionary.
Each branch is characterized by the end
of the linked list as a link address. To
execute an instruction defined by VO
CABULARY is to store this link address
into a memory location named CON
TEXT. Hereafter, the text interpreter will
first search the dictionary starting at this
link address in CONTEXT when it re
ceives an instruction from the input
stream (e.g., the console terminal).

Instructions defined by VOCABU
LARY are used to switch context in
FORTH. If all instructions were given
unique names, the text interpeter would
be able to locate them without any am
biguity. The problem arises because the
user might want to use the same names
for different instructions. This problem is
especially acute for single character in
structions, which are favored for instruc
tions used very often to reduce the typ
ing chore or to reduce the size of source
text. The usable ASCII characters are the
limit of choices. Instructions of related
functions can be grouped into vocabu
laries using vocabulary instructions. Con
text will then be switched conveniently
from one vocabulary to another. Instruc
tions with identical names can be used
unambiguously if they are placed in dif
ferent vocabularies.

Creating Defining Instructions
FORTH is an interpretive language

with a multitude of interpreters. This is
the reason why FORTH can afford to
have such a simple syntax structure. An
instruction is known to a user only by its
name. The interpreter which interprets
the instruction is specified by the instruc
tion itself, in its code field which points
to an executable machine instruction rou
tine. This executable routine is executed
at run-time and it interprets the inform a
tion contained in the body of the instruc
tion. Instructions created by one defining
instruction share the same interpreter.
The interpreter which interprets high
level colon instructions is called “address
interpreter,” because a colon instruction
is equivalent to a list of addresses. Con
stants and variables also have their re
spective interpreters.

A defining instruction must perform
two different tasks when it is used tr
define a new user instruction. To create
a new instruction, the defining instruc
tion must compile the new instruction

coding a,id documenting of the code
instructions. The detailed discussion of
these advanced instructions is outside the
scope of this article.

271 Dr. Dobb’s Journal. Number 64, rcbruarv 1982

into the dictionary, constructing the
name field, link field, and code field —

which point to the appropriate inter
preter — and the parameter field, which
contains pertinent data making up the
body of this new instruction. The detin
ing instruction must also contain an inter
preter, which will execute the new in.

struction at runtime. The address of this
interpreter is inserted into the code field
of all user instructions created by this
defining instruction. The defining instruc
tion is a combination of a compiler and
an interpreter in conventional program
ming terminology. A defining instruction
constructs new user instructions during
compilation and executes the instructions
it created at runtune. Because a user in
struction uses the code field to point to
its interpreter, no explicit syntax rule is
necessary for different types of instruc
tions. Each instruction can be called di
rectly by its name. The user does not
have to supply any more information ex
cept the names, separated by delimiters.

The most exciting feature of FORTH
as a programming language is that it not
only provides many resident defining
instructions as compiler-interpreters, but
also supplies the mechanism for the user
to define new defining instructions, to
generate new classes of instructions or
new data structures tailored to specific
applications. This unique feature in
FORTH amounts to the capability of ex
tending the language by constructing new
compilers and new interpreters. Normal
programming activity in FORTH is to
build new instructions, which is similar to
writing programs and program modules
in conventional languages. The capability
to define new defining instructions is ex
tensibility at a high level in the FORTH
language.4 This unique feature cannot be
found in any popular programming lan
guage.

There are two methods to define a
new defining instruction as shown in
Table HI. The : — <CREATE— DOES> —;
construct creates a defining instruction
with an interpreter defined by high level
instructions very similar to a structure list
in a regular colon definition. The inter
preter structure list is put between
DOES>and “;“. The compilation proce
dure is contained between <CREATE and
DOES>. Since the interpreter will be
used to execute all the instructAons creat
ed by this defining instruction, the inter-

- oer is preferably coded in machine
LICS to increase execution speed. This

Conclusion
Computer programming is a form of

art, far from being a discipline of science
or engineering. For a specified program
ming problem, there are essentially an
infinite number of solutions, entirely de
pendent upon the programmer as an arti
san. However, we can rate a solution by
its correctness, its memory requirement,
its execution speed, and other qualities.
A solution must be correct. For some
applications, the best solution has
to be the shortest and fastest. The only
way to achieve this goal is to use the
nomputer with an instruction set opti
mired for the problem. Optimization of
the computer hardware is clearly imprac
tical because of the excessive costs. Thus,
one would have to compromise by using a
fixed, general purpose instruction set of
fered by a real computer or a language
compiler. To solve a problem with a fixed
instruction set, one has to write programs
to circumvent the shortcomings of the in
struction set.

The solution in FORTH is not a
chieved by writing prugrams, but by
creating a new instruction set in the
FORTH virtual computer. The new in
struction set in essence becomes “the”
solution to the programming problem.
This new instruction set can be optimized
at various levels for memory space and
for execution speed, including hardware
optimization. FORTH allows us to sur
pass the fundamental limitation of any
computer, which is the limited and fixed
instruction set. This limitation is also
shared by conventional programming lan
guages, though at a higher and more ab
stract level.

FORTH as a programming language
allows programmers to be more creative
and productive because it enables them to
mold a virtual computer with an instruc
tion set best suited for the problems at
hand. In this sense, FORTH is a revolu
tionary development in computer acience
and technology.

1. Moore, C. H., “FORTH: A New Way
to Program in Minicomputer,” Astron.
Astrophys. Suppl. 15, pp. 497-5 II,
(1974).

2. “FORTH-79: A Publication of the
FORTH Standards Team,” FORTH
Interest Group, P. 0. Box 1105, San
Carlos, CA (1980).

3. Main, R. B., “FORTH vs. Assembly,”
FOR TI! Dimensions 1,33(1978).

4. Harris, K., ‘FORTH Extensibility,”
BYTE,5, ,(1980).

is accomplished by the References
:—<CREATE— ;CODE—

construct. The compilation procedure
is specified by instructions between
<CREATE and ;CODE. Data following
;CODE are compiled as machine code
which will be used as an interpreter when
the new instruction defined by this defin
ing instruction is executed at run-time.

ui Lii, Number 64. Fehriemv 1982 272

Formal Definition of FORTH as a Programming Language

(Tables I, II, and 111)

Table I

LANGUAGE DEFINITION OF FORTH

character.: := (ASCII code>
<delimitinq character> NUL CR : SP <designated character.>
(delimiter.’ ::= (delimiting character::

(delimiting character:>(delimiter:>

(ord:’• <instruction> <number> (string>
:stranq) :haracter:> <character:::<string>
‘;number.> : := <integer::: —<integer>
integer:: :diqi t> (digi t::<integer::

.:djgjt>. : C) 1 2 9 A B . base—1.>

(standard instruction> I <user instruction)

:3tandard instruction> : = <nucleus instruction>
<interpreter instruction::
<compiler instruction::: <device instruction>

nucleus instruction.> * *1 JMOD + I + — —DLIP
/MOD 1 0< 1 0= o::• 1+ 1 1— 2÷ 1 2— 1 .R
ABS I AND C C CMOVE I D+ D< DNEGATE DROP DUP
EXECUTE I EXIT FILL MAX I MIN MOD MOVE NEGATE NOT OR
OVER I R> I R;D ROT SWAP I U* U/MOD I U(I XDR

interpreter instruction.: # : #:> #6 1 K —TRAILING . I :.#
>IN I ? I ABORT I BASE BLK CONTEXT CONVERT I COUNT I CURRENT
DECIMAL EXPECT I FIND I FORTH HERE I HOLD NUMBER I PAD
QUERY QJIT SIGN SPACE I SPACES TYPE I U. JORD

compiler instruction; -LODP • I •“ ALLOT BEGIN
COMPILE CONSTANT I CREATE I DEFINITIONS DO DOES> ELSE I
FORGET I I IF I IMMEDIATE 3 1 LEAVE I LITERAL
LOOP I REPEAT I THEN UNTIL I VARIABLE VOCABULARY WHILE
C [COMPILE] J

device instruction) BLOCK BUFFER CR EMIT I EMPTY-BUFFERS
FLUSH KEY I LIST I LOAD 9CR UPDATE

user instri.ction.> :: (clrjn instruction.> <cde instruction.>
::cnstant> : varible::. I (‘iocabuiary>

28 273 Dr. Dobb’ Journal, Number 64, February 1982

Table 11

USER INSTRUCTIONS

The statement in parenthesis is according to the FORTH syntax.

COLON INSTRUCTION
colon instruction> <stritcture list:>

•:colon mnstruction. <structure list> ;)

• structure list> = <,structure.:VVcdel imiter) I

structure.>cdelimiter><structure list.>

structure> <word> : <if—else—then> <begin—until> I

<‘begin—while—repeat.> (do—loop>

.:Vjfe1ethen: = IF<delimiter><structure list>THEN

IF:delitniter)<structure list>ELSE<delimiter><structure lit>THEN

begin—urtil> ::= E4EGIN<delimiter)<structure list)UNTIL

:beqin-while--repeat> ::

BEGIN’<delimiter’:”(structure Iist>WHILE-delimiter><structure list>REPET

• do-loop structure.: : .structure) : t 3 LEWE

•.:do- loop tstructure 1 i st do—l oop structure.><.del irni ter>

do1c’p structure:VV.delimiter:cdoloop structure list>

dlp r)o::delimiter><da—loop structure list’>LDOP

DO de1irniter>doloop structure ltst’:+LOOP

CODE INSTRUCTION
:c-,de nstruction,: ::

V<55$y code list:

CODE .:c:<de instruction> .V.::assembly code list>

f:Lde list: : <assembly code)’delimiter,:

codeV.V<delimiter:::VVcVassembly code list.:
a;5embJ c.ode< : : <number <del i miter>, -“number >-(del i miter >C,

CC’NSTNT LNSTP’JCTIQN
Qfl5+’ Ent : : nLIi-nber

CONSTANT constant
V

mL[’ I NSTRUCT ICN
= V add

)i-,F:I>mEmLF
inteqer

;IbLlL RY r9 iC 1 1 DlJ

C’i1’. ‘QchuLr’..
ocr bu1 r ‘>

(Tab/c /11)P7 next Dage

jL1rn., Nurnber 64. cbruar 982 274

Table Ill

CRE TI NØ NLW LF I N I NO INSTRUCT IONS

hiqh-leve1 defininq intructian:>

CREATE::del i mi ter><.comnpi ler structure 1 ist:CDOES)(del imiter

•::iriterpreter structure list::;;

:high—l’el defining instruction> CREATE <structure l1:t DOES.:

:strLjctLLre list)

lo--leve1 defining instruction.> :;

CREATE(delimiter) compiler structure list)CDDE<delimiter>

:interpreter assembly code list::

:.:lcw_level do-fining instruction. CREATE <structure list:> ;CODE

<interpreter assembly code list>

ompi icr structure list:: : = <structure list>

:inerpretcr structure list> : .structure list>

int.rpretr sembly code list> : := <assembly code list>
a3

275

r

